
Exercise Set 8 - Electric actuators

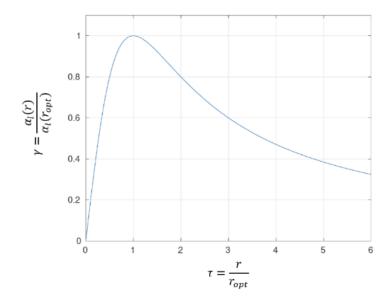
Exercise 1

Consider a DC motor with:

- J_m the inertia of the motor.
- R_a the winding resistance.
- L_a the winding inductance.
- k_e the electrical constant
- k_t the torque constant

This motor is controlled in current by a voltage-current amplifier.

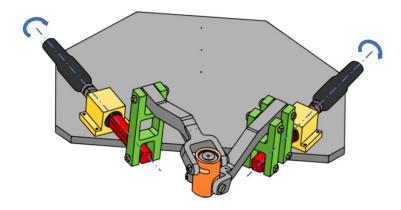
Give the shape of the acceleration, speed, and position curves at the output for a given step input i_0 .


Hint: First derive the theoretical response to the given input. Later, derive the realistic response by taking into consideration that the amplifier's output voltage is limited by the supply voltage.

Exercise 2

The motor axis of the second rotation of a SCARA robot is produced by the combination of a motor and a reducer with the following specifications:

- motor inertia: $J_m = 625 \text{ g.cm}^2$
- reduction ratio: n = 180
- inertia of the arm: $J_a = 0.1 \text{ kg.m}^2$


Here is the curve $\gamma(\tau)=\frac{\alpha_l}{\alpha_{opt}}=2\frac{\tau}{1+\tau^2}$, where $\tau=\frac{r}{r_{opt}}$ with r – the reduction ratio and α – the acceleration. (/ stands for "load" and "opt" for "optimal")

- 1. Determine the optimal reduction ratio for the considered segment.
- 2. With the given transmission in the question, determine the achievable rate of acceleration in relation with the optimal case.

Exercise 3

Consider the robot shown below:

- 1. Give the type of architecture of the robot (serial or parallel).
- 2. Determine the number of DOFs.
- 3. Represent the vectors of the tool coordinates and the joint coordinates on the drawing.

One of the robot's "motor + reducer + arm + forearm" axes is shown below in two extreme postures. Each posture corresponds to a disposition of the robot and for each posture the equivalent inertia of the load (arm + forearm) is given by the value J_i .

(a) $J_l = 1.01 \times 10^{-1} \text{kg.m}^2$

(b) $J_l = 3.36 \times 10^{-2} \text{kg.m}^2$

Note: Although the geometry of the arms is not exactly the same on both sides, assume that they have the same equivalent inertia.

Knowing the following parameters:

- reduction ratio (GP62A): n = 181
- inertia of the reducer on the input side: $J_r = 88 \text{ g.cm}^2$
- inertia of the motor (RE 50): $J_m = 542 \text{ g.cm}^2$
- nominal motor torque: Γ_m = 420 mN.m
- 4. Give the equivalent moment of inertia referred to the output (load side).
- 5. Give the optimal reduction ratio for each configuration.
- 6. Are we too far from optimal performance?